CRF-Based Authors’ Name Tagging for Scanned Documents

Manabu Ohta* and Atsuhiro Takasu**
*Okayama University
**National Institute of Informatics
June 19, 2008
Agenda

- Background
 - Motivation of our research
- Two-tier authors’ names extraction
 - Authors’ block extraction
 - CRF-based author/delimiter tagging
- Experiments
- Conclusions and future works
Motivation

- Digitizing process of printed docs for DL
 - Scan => Analyze => Recognize => Store
 - Construction of bibl. DB is labor-intensive
- Automatic extraction of bibl. data from scanned academic articles
 - Cost-effective
 - Need to be error-tolerant to OCR errors
- Why extract “authors’ names”?
 - Because among the most critical bibl. elements
Authors’ names extraction

- **Two-tier** authors’ names extraction
 - Authors’ block extraction
 - Extract a block representing authors from a title page
 - CRF-based author/delimiter tagging
 - Label every character as either author or delimiter

- Authors’ block example

- **Our OCR system**
 - English and Japanese OCR engines
 - Layout analysis + character recognition
 - Output bounding rectangles for *chars, lines, blocks*
Author/delimiter tagging

Tag sets

- **2-tag set**: mere *author* or *delimiter*
- **2+pos-tag set**: 2-tag set with *character positions*
 - The max positions of *a* and *d* determined by training
Conditional Random Fields (CRF)

\(y = t_1 t_2 \cdots t_n : \) a tag sequence

\(x = c_1 c_2 \cdots c_n : \) an input char sequence

\(P(y \mid x) = \frac{1}{Z_x} \exp\left(\sum_{i=1}^{n} \sum_{k} \lambda_k f_k (t_{i-1}, t_i, x) \right) \)

\(\hat{y} = \arg \max_{y \in Y(x)} P(y \mid x) \)

Feature functions

- Features: chars (textual info.) & widths (layout info.)
- E.g.

\[
f_k (t_{i-1}, t_i, x) = \begin{cases}
1 & \text{if } c_i = 'f', t_i = d \\
0 & \text{otherwise}
\end{cases}
\]
Experiments

- Data: OCR-processed academic articles
 - 54 issues of TIPSJ in 2003 (vol.44), 2004 (vol.45)
 - Training: vol.44, Test: half of vol.45

- OCR accuracy
 - 99.00% for abstract, 97.01% for references

- Implementation: CRF++ 0.50

- Selected features for our CRF
 - $<$c(0)$>$: character unigram
 - $<$w(0)$>$: character’s width unigram
 - $<$t(-1),t(0)$>$: tag bigram
Tagging accuracy (test data)

Accuracy in #Author (%)

A: \(<c(0)> + <t(-1), t(0)>\)
B: \(<w(0)> + <t(-1), t(0)>\)
Both: \(<c(0)> + <w(0)> + <t(-1), t(0)>\)

HMM: our HMM-based tagger

Accuracy in #Article (%)

A: \(<c(0)> + <t(-1), t(0)>\)
B: \(<w(0)> + <t(-1), t(0)>\)
Both: \(<c(0)> + <w(0)> + <t(-1), t(0)>\)

HMM: our HMM-based tagger
Discussion

■ The setting “Both”
 - Achieved 99.22% accuracy (in #Author)
 - Outperformed A, B, and our HMM-based tagger

■ 2-tag vs. 2+pos-tag sets
 - Almost no difference in this experiment

■ Tagging errors
 - Caused by OCR errors & noises of documents
 - Often occur at the boundary between name and delimiter strings
Conclusions

- Proposed a CRF-based authors’ name tagger
 - Applied it after extracting authors’ (text) blocks
 - More than 99% tagging accuracy
 - It outperformed our HMM-based one

Future works

- Accuracy improvement with other features
- Title page analysis system for automatic extraction
- Extracting other bibl. data such as title, abstract, ...
Questions and Comments?