Cross-Disciplinary Molecular Science Education in Introductory Science Courses: An NSDL MatDL Collection

Joint Conference on Digital Libraries
Pittsburgh, PA June 2008

David Yaron, Jodi Davenport, Michael Karabinos, Gaea Leinhardt
CMU and University of Pittsburgh
Laura Bartolo, John Portman, Cathy Lowe
Kent State University
Donald Sadoway, W. Craig Carter and Colin Ashe
MIT
Outline

- Digital libraries as cognitive tools
- Digital libraries as component repositories
- Digital libraries as knowledge networks

NSDL Materials Digital Library Pathway

- NSF MS Initiatives (NIRTs, MRSECs, IMIs)
 - Soft Matter Wiki
- Teaching Resource Development
 - MS Teaching Archive
- Stewardship
 - MatDL Repository
- Code Development
 - Matforge
 - NIST FiPy
 - CMU
 - DOE CMSN
- Virtual Labs
 - Intro to Solid State Chem
 - Intro to Bio Physics
 - Modern Chemistry

http://matdl.org/matdlwiki
http://matdl.org/virtuallabs
http://matdl.org/teaching.matdl.org
http://matdl.org/matdl.org
http://matdlforgo.org
Multidisciplinary, multi-institutional team
- MIT – Materials Science & Engineering
 - Fall’ 07 Introduction to Solid State Chemistry, 3.091
 - Don Sadoway, W. Craig Carter, Colin Ashe

- CMU – ChemCollective & NSF Center on Science of Learning
 - Spr’ 08 Modern Chemistry
 - David Yaron, Jodi Davenport, Michael Karabinos, Gaea Leinhardt

- KSU – BioPhysics & MatDL
 - Fall’07 Introduction to BioPhysics
 - Laura Bartolo, John Portman, Cathy Lowe
Digital libraries as cognitive tools

- Modality is that of virtual labs
 - Visualization and simulation tools
 - Common tools across disciplines, with discipline specific instruction (recurring patterns of molecular science)

- Context
 - Discipline specific courses: Chemistry, Biology, Materials Science (Physics..)

- Learning goals
 - Help novices construct expert mental models
Design Process

- Experts from multiple domains met to identify concepts/frameworks that are
 - Central to their domain
 - Have strong leverage
 - Are difficult to teach/learn
- Find intersections/overlaps
- Will cross-disciplinary design lead to more reusable learning objects?
Outcome of the Design Process

- Reaction paths and energy landscapes

- Used to describe, for example,
 - Organic chemistry reactions
 - Diffusion on surfaces
 - Protein folding/unfolding
Development process

- Analyze content with experts, novices and psychologists
- Sequential focus on aspects of the diagram
 - What is Q?
 - What is temperature?
 - Energy vs. free energy
What is the reaction coordinate Q?
Motion connected to a heat bath
Coordination
Entropy: Energy vs. free energy
Formative assessment

- Psychologists examine for coherence
- Trial in computer cluster
 - 15 students, 3 faculty, 2 developers, 1 psychologist
 - Filmed the activity and a group discussion
- Post survey
 - Meaning of representations
 - Self-perceptions of learning
 - Open-ended conceptual questions

http://matdl.org/virtuallabs
- **Student perception of learning**
 - Helped connect concepts in new ways: 3.6
 - Helped see how the same principles apply to different topics: 3.7
 - Was well organized: 3.6
 - Was easy to understand: 3.1
 - Was a good use of time: 3.0
 - Was fun: 2.7
 - Gave a deeper understanding of principles I already knew: 3.2
 - Gave a deeper understanding of principles I did not know: 3.5

- **Pre and post test (23 items, N=69)**
 - (M = .59, SD = .15) → (M = .67, SD = .12)
 - 2-tailed paired sample t-test, t(68)=4.638, p<.001
Future topics

- Molecular forces
 - How do intra- and inter- molecular forces lead to structure formation
- Economies of exchange
 - Similarities across heat, proton and electron exchange
- How natural and designed systems promote one molecular process over another
 - From molecular science to molecular engineering
Digital libraries as component repositories

- **Virtual Labs wiki** http://matdl.org/virtuallabs
 - Support multidisciplinary development & use of VLs
- **Virtual Labs code development** http://matforge.org/virtuallabs
 - Support collaborative enhancement of existing & new VLs
- **MatDL Repository** matdl.org/repository/virtuallabs
 - Support reuse of source code & teaching resources
- **Metadata & Dissemination**
 - In MatDL Repository & NSDL NDR
Digital libraries as knowledge networks

- Development around core set of visualization tools and virtual manipulatives
 - Does design for use in multiple contexts and disciplinary courses lead to more reuseable learning objects?
 - Does bringing together perspectives from different disciplines lead to more a coherent set of instructional materials?
Thank you & Questions?

lbartolo@kent.edu yaron@cmu.edu

The NSDL Materials Digital Library Pathway is supported by the National Science Foundation DUE-0532831 and the Virtual Labs by DUE-0632726. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.